MakeItFrom.com
Menu (ESC)

ACI-ASTM CA28MWV Steel vs. Grade 5 Titanium

ACI-ASTM CA28MWV steel belongs to the iron alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA28MWV steel and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11
8.6 to 11
Fatigue Strength, MPa 470
530 to 630
Poisson's Ratio 0.28
0.32
Reduction in Area, % 27
21 to 25
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 1080
1000 to 1190
Tensile Strength: Yield (Proof), MPa 870
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 740
330
Melting Completion (Liquidus), °C 1470
1610
Melting Onset (Solidus), °C 1430
1650
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 25
6.8
Thermal Expansion, µm/m-K 10
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.6
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 7.9
4.4
Embodied Carbon, kg CO2/kg material 3.1
38
Embodied Energy, MJ/kg 44
610
Embodied Water, L/kg 100
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1920
3980 to 5880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 38
62 to 75
Strength to Weight: Bending, points 30
50 to 56
Thermal Diffusivity, mm2/s 6.6
2.7
Thermal Shock Resistance, points 40
76 to 91

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0.2 to 0.28
0 to 0.080
Chromium (Cr), % 11 to 12.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 81.4 to 85.8
0 to 0.4
Manganese (Mn), % 0.5 to 1.0
0
Molybdenum (Mo), % 0.9 to 1.3
0
Nickel (Ni), % 0.5 to 1.0
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
87.4 to 91
Tungsten (W), % 0.9 to 1.3
0
Vanadium (V), % 0.2 to 0.3
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Residuals, % 0
0 to 0.4