MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40 Steel vs. AWS BNi-3

ACI-ASTM CA40 steel belongs to the iron alloys classification, while AWS BNi-3 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA40 steel and the bottom bar is AWS BNi-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
170
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
66
Tensile Strength: Ultimate (UTS), MPa 910
430

Thermal Properties

Latent Heat of Fusion, J/g 280
350
Melting Completion (Liquidus), °C 1440
1040
Melting Onset (Solidus), °C 1500
980
Specific Heat Capacity, J/kg-K 480
480
Thermal Expansion, µm/m-K 10
10

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
60
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.0
9.9
Embodied Energy, MJ/kg 28
140
Embodied Water, L/kg 100
220

Common Calculations

Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
22
Strength to Weight: Axial, points 33
14
Strength to Weight: Bending, points 27
15
Thermal Shock Resistance, points 33
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Boron (B), % 0
2.8 to 3.5
Carbon (C), % 0.2 to 0.4
0 to 0.060
Chromium (Cr), % 11.5 to 14
0
Cobalt (Co), % 0
0 to 0.1
Iron (Fe), % 81.5 to 88.3
0 to 0.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
90.1 to 93.3
Phosphorus (P), % 0 to 0.040
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 1.5
4.0 to 5.0
Sulfur (S), % 0 to 0.040
0 to 0.020
Titanium (Ti), % 0
0 to 0.050
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5