MakeItFrom.com
Menu (ESC)

ACI-ASTM CA6N Steel vs. ASTM A182 Grade F3VCb

Both ACI-ASTM CA6N steel and ASTM A182 grade F3VCb are iron alloys. They have 84% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA6N steel and the bottom bar is ASTM A182 grade F3VCb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
21
Fatigue Strength, MPa 640
320
Poisson's Ratio 0.28
0.29
Reduction in Area, % 57
50
Shear Modulus, GPa 75
74
Tensile Strength: Ultimate (UTS), MPa 1080
670
Tensile Strength: Yield (Proof), MPa 1060
460

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 740
470
Melting Completion (Liquidus), °C 1440
1470
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 23
40
Thermal Expansion, µm/m-K 9.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
4.5
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.5
2.4
Embodied Energy, MJ/kg 35
33
Embodied Water, L/kg 110
64

Common Calculations

PREN (Pitting Resistance) 12
6.3
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
120
Resilience: Unit (Modulus of Resilience), kJ/m3 2900
570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 38
24
Strength to Weight: Bending, points 30
22
Thermal Diffusivity, mm2/s 6.1
11
Thermal Shock Resistance, points 40
19

Alloy Composition

Calcium (Ca), % 0
0.00050 to 0.015
Carbon (C), % 0 to 0.060
0.1 to 0.15
Chromium (Cr), % 10.5 to 12.5
2.7 to 3.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 77.9 to 83.5
93.8 to 95.8
Manganese (Mn), % 0 to 0.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 6.0 to 8.0
0 to 0.25
Niobium (Nb), % 0
0.015 to 0.070
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0
0 to 0.015
Vanadium (V), % 0
0.2 to 0.3