MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. EN 1.8881 Steel

Both ACI-ASTM CB30 steel and EN 1.8881 steel are iron alloys. They have 80% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is EN 1.8881 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
250
Elastic (Young's, Tensile) Modulus, GPa 200
190
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 500
830
Tensile Strength: Yield (Proof), MPa 230
710

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 940
420
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
40
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
3.7
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.3
1.9
Embodied Energy, MJ/kg 33
26
Embodied Water, L/kg 130
54

Common Calculations

PREN (Pitting Resistance) 20
2.0
Resilience: Unit (Modulus of Resilience), kJ/m3 140
1320
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
29
Strength to Weight: Bending, points 18
25
Thermal Diffusivity, mm2/s 5.6
11
Thermal Shock Resistance, points 17
24

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.3
0 to 0.2
Chromium (Cr), % 18 to 21
0 to 1.5
Copper (Cu), % 0 to 1.2
0 to 0.3
Iron (Fe), % 72.9 to 82
91.9 to 100
Manganese (Mn), % 0 to 1.0
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0 to 2.0
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.5
0 to 0.8
Sulfur (S), % 0 to 0.040
0 to 0.0080
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zirconium (Zr), % 0
0 to 0.15