MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MWCuN Steel vs. S44401 Stainless Steel

Both ACI-ASTM CD3MWCuN steel and S44401 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MWCuN steel and the bottom bar is S44401 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 29
21
Fatigue Strength, MPa 370
200
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
78
Tensile Strength: Ultimate (UTS), MPa 790
480
Tensile Strength: Yield (Proof), MPa 500
300

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 450
510
Maximum Temperature: Mechanical, °C 1100
930
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
22
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 22
12
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.2
2.9
Embodied Energy, MJ/kg 58
40
Embodied Water, L/kg 180
130

Common Calculations

PREN (Pitting Resistance) 42
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
90
Resilience: Unit (Modulus of Resilience), kJ/m3 620
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
17
Strength to Weight: Bending, points 24
18
Thermal Diffusivity, mm2/s 4.2
5.9
Thermal Shock Resistance, points 22
17

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.025
Chromium (Cr), % 24 to 26
17.5 to 19.5
Copper (Cu), % 0.5 to 1.0
0
Iron (Fe), % 56.6 to 65.3
75.1 to 80.6
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 3.0 to 4.0
1.8 to 2.5
Nickel (Ni), % 6.5 to 8.5
0 to 1.0
Nitrogen (N), % 0.2 to 0.3
0 to 0.035
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8
Tungsten (W), % 0.5 to 1.0
0