MakeItFrom.com
Menu (ESC)

ACI-ASTM CD4MCuN Steel vs. Grade 25 Titanium

ACI-ASTM CD4MCuN steel belongs to the iron alloys classification, while grade 25 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD4MCuN steel and the bottom bar is grade 25 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 18
11
Fatigue Strength, MPa 340
550
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 770
1000
Tensile Strength: Yield (Proof), MPa 550
940

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
340
Melting Completion (Liquidus), °C 1420
1610
Melting Onset (Solidus), °C 1380
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 17
7.1
Thermal Expansion, µm/m-K 13
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.0

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.5
43
Embodied Energy, MJ/kg 49
700
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 760
4220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 28
62
Strength to Weight: Bending, points 24
50
Thermal Diffusivity, mm2/s 4.5
2.8
Thermal Shock Resistance, points 21
71

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.040
0 to 0.080
Chromium (Cr), % 24.5 to 26.5
0
Copper (Cu), % 2.7 to 3.3
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 59.5 to 66.3
0 to 0.4
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.7 to 2.3
0
Nickel (Ni), % 4.7 to 6.0
0.3 to 0.8
Nitrogen (N), % 0.1 to 0.25
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
86.7 to 90.6
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4