MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8C Steel vs. AISI 317LMN Stainless Steel

Both ACI-ASTM CF8C steel and AISI 317LMN stainless steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8C steel and the bottom bar is AISI 317LMN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
45
Fatigue Strength, MPa 220
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
79
Tensile Strength: Ultimate (UTS), MPa 530
620
Tensile Strength: Yield (Proof), MPa 260
270

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 490
420
Maximum Temperature: Mechanical, °C 980
1020
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
14
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.7
4.8
Embodied Energy, MJ/kg 53
65
Embodied Water, L/kg 150
170

Common Calculations

PREN (Pitting Resistance) 20
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
230
Resilience: Unit (Modulus of Resilience), kJ/m3 170
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
22
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 4.3
3.8
Thermal Shock Resistance, points 11
14

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 18 to 21
17 to 20
Iron (Fe), % 61.8 to 73
54.4 to 65.4
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0 to 0.5
4.0 to 5.0
Nickel (Ni), % 9.0 to 12
13.5 to 17.5
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 2.0
0 to 0.75
Sulfur (S), % 0 to 0.040
0 to 0.030