MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8C Steel vs. AISI 405 Stainless Steel

Both ACI-ASTM CF8C steel and AISI 405 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8C steel and the bottom bar is AISI 405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
170
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
22
Fatigue Strength, MPa 220
130
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Tensile Strength: Ultimate (UTS), MPa 530
470
Tensile Strength: Yield (Proof), MPa 260
200

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 490
390
Maximum Temperature: Mechanical, °C 980
820
Melting Completion (Liquidus), °C 1420
1530
Melting Onset (Solidus), °C 1430
1480
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
30
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.7
2.0
Embodied Energy, MJ/kg 53
28
Embodied Water, L/kg 150
100

Common Calculations

PREN (Pitting Resistance) 20
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
84
Resilience: Unit (Modulus of Resilience), kJ/m3 170
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
17
Strength to Weight: Bending, points 19
17
Thermal Diffusivity, mm2/s 4.3
8.1
Thermal Shock Resistance, points 11
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.3
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 18 to 21
11.5 to 14.5
Iron (Fe), % 61.8 to 73
82.5 to 88.4
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 9.0 to 12
0 to 0.6
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.030