MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8C Steel vs. ASTM A369 Grade FP92

Both ACI-ASTM CF8C steel and ASTM A369 grade FP92 are iron alloys. They have 78% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8C steel and the bottom bar is ASTM A369 grade FP92.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
19
Fatigue Strength, MPa 220
330
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Tensile Strength: Ultimate (UTS), MPa 530
710
Tensile Strength: Yield (Proof), MPa 260
490

Thermal Properties

Latent Heat of Fusion, J/g 300
260
Maximum Temperature: Mechanical, °C 980
590
Melting Completion (Liquidus), °C 1420
1490
Melting Onset (Solidus), °C 1430
1450
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
26
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
10

Otherwise Unclassified Properties

Base Metal Price, % relative 19
11
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.7
2.8
Embodied Energy, MJ/kg 53
40
Embodied Water, L/kg 150
89

Common Calculations

PREN (Pitting Resistance) 20
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
120
Resilience: Unit (Modulus of Resilience), kJ/m3 170
620
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
25
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 4.3
6.9
Thermal Shock Resistance, points 11
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.080
0.070 to 0.13
Chromium (Cr), % 18 to 21
8.5 to 9.5
Iron (Fe), % 61.8 to 73
85.8 to 89.1
Manganese (Mn), % 0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.5
0.3 to 0.6
Nickel (Ni), % 9.0 to 12
0 to 0.4
Niobium (Nb), % 0 to 1.0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 2.0
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010