MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8C Steel vs. EN 1.4008 Stainless Steel

Both ACI-ASTM CF8C steel and EN 1.4008 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8C steel and the bottom bar is EN 1.4008 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
17
Fatigue Strength, MPa 220
300
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Tensile Strength: Ultimate (UTS), MPa 530
670
Tensile Strength: Yield (Proof), MPa 260
500

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 490
390
Maximum Temperature: Mechanical, °C 980
760
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
25
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
8.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.7
2.1
Embodied Energy, MJ/kg 53
30
Embodied Water, L/kg 150
100

Common Calculations

PREN (Pitting Resistance) 20
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
100
Resilience: Unit (Modulus of Resilience), kJ/m3 170
630
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
24
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 4.3
6.7
Thermal Shock Resistance, points 11
23

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 18 to 21
12 to 13.5
Iron (Fe), % 61.8 to 73
81.8 to 86.8
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0.2 to 0.5
Nickel (Ni), % 9.0 to 12
1.0 to 2.0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.025