MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8C Steel vs. EN 1.4347 Stainless Steel

Both ACI-ASTM CF8C steel and EN 1.4347 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8C steel and the bottom bar is EN 1.4347 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
23
Fatigue Strength, MPa 220
320
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
79
Tensile Strength: Ultimate (UTS), MPa 530
660
Tensile Strength: Yield (Proof), MPa 260
480

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 490
450
Maximum Temperature: Mechanical, °C 980
1100
Melting Completion (Liquidus), °C 1420
1410
Melting Onset (Solidus), °C 1430
1370
Specific Heat Capacity, J/kg-K 480
490
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
16
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.7
3.1
Embodied Energy, MJ/kg 53
44
Embodied Water, L/kg 150
170

Common Calculations

PREN (Pitting Resistance) 20
28
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
140
Resilience: Unit (Modulus of Resilience), kJ/m3 170
570
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
24
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 4.3
4.0
Thermal Shock Resistance, points 11
19

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 18 to 21
25 to 27
Iron (Fe), % 61.8 to 73
62.2 to 69.4
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 9.0 to 12
5.5 to 7.5
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 2.0
0 to 1.5
Sulfur (S), % 0 to 0.040
0 to 0.020