MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8C Steel vs. EN 1.5680 Steel

Both ACI-ASTM CF8C steel and EN 1.5680 steel are iron alloys. They have 73% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8C steel and the bottom bar is EN 1.5680 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
23
Fatigue Strength, MPa 220
310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 530
620
Tensile Strength: Yield (Proof), MPa 260
440

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 980
420
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
48
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 19
5.0
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.7
1.9
Embodied Energy, MJ/kg 53
26
Embodied Water, L/kg 150
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
130
Resilience: Unit (Modulus of Resilience), kJ/m3 170
510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
22
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 4.3
13
Thermal Shock Resistance, points 11
18

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 18 to 21
0
Iron (Fe), % 61.8 to 73
93.4 to 95
Manganese (Mn), % 0 to 1.5
0.3 to 0.8
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 9.0 to 12
4.8 to 5.3
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 2.0
0 to 0.35
Sulfur (S), % 0 to 0.040
0 to 0.0050
Vanadium (V), % 0
0 to 0.050