MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8C Steel vs. EN 2.4879 Cast Nickel

ACI-ASTM CF8C steel belongs to the iron alloys classification, while EN 2.4879 cast nickel belongs to the nickel alloys. They have 47% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8C steel and the bottom bar is EN 2.4879 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
3.4
Fatigue Strength, MPa 220
110
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
80
Tensile Strength: Ultimate (UTS), MPa 530
490
Tensile Strength: Yield (Proof), MPa 260
270

Thermal Properties

Latent Heat of Fusion, J/g 300
330
Maximum Temperature: Mechanical, °C 980
1150
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 16
11
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 19
55
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 3.7
8.3
Embodied Energy, MJ/kg 53
120
Embodied Water, L/kg 150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
14
Resilience: Unit (Modulus of Resilience), kJ/m3 170
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 19
16
Strength to Weight: Bending, points 19
16
Thermal Diffusivity, mm2/s 4.3
2.8
Thermal Shock Resistance, points 11
13

Alloy Composition

Carbon (C), % 0 to 0.080
0.35 to 0.55
Chromium (Cr), % 18 to 21
27 to 30
Iron (Fe), % 61.8 to 73
9.4 to 20.7
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0 to 0.5
0 to 0.5
Nickel (Ni), % 9.0 to 12
47 to 50
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 2.0
1.0 to 2.0
Sulfur (S), % 0 to 0.040
0 to 0.030
Tungsten (W), % 0
4.0 to 6.0