MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8C Steel vs. C15500 Copper

ACI-ASTM CF8C steel belongs to the iron alloys classification, while C15500 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8C steel and the bottom bar is C15500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 40
3.0 to 37
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Tensile Strength: Ultimate (UTS), MPa 530
280 to 550
Tensile Strength: Yield (Proof), MPa 260
130 to 530

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1420
1080
Melting Onset (Solidus), °C 1430
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
350
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
90
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
91

Otherwise Unclassified Properties

Base Metal Price, % relative 19
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.7
2.7
Embodied Energy, MJ/kg 53
42
Embodied Water, L/kg 150
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
15 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 170
72 to 1210
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19
8.6 to 17
Strength to Weight: Bending, points 19
11 to 17
Thermal Diffusivity, mm2/s 4.3
100
Thermal Shock Resistance, points 11
9.8 to 20

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
99.75 to 99.853
Iron (Fe), % 61.8 to 73
0
Magnesium (Mg), % 0
0.080 to 0.13
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 9.0 to 12
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0.040 to 0.080
Silicon (Si), % 0 to 2.0
0
Silver (Ag), % 0
0.027 to 0.1
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.2