MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8C Steel vs. C19800 Copper

ACI-ASTM CF8C steel belongs to the iron alloys classification, while C19800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8C steel and the bottom bar is C19800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
9.0 to 12
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Tensile Strength: Ultimate (UTS), MPa 530
430 to 550
Tensile Strength: Yield (Proof), MPa 260
420 to 550

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1420
1070
Melting Onset (Solidus), °C 1430
1050
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
260
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
61
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
62

Otherwise Unclassified Properties

Base Metal Price, % relative 19
30
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.7
2.8
Embodied Energy, MJ/kg 53
43
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
49 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 170
770 to 1320
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19
14 to 17
Strength to Weight: Bending, points 19
14 to 17
Thermal Diffusivity, mm2/s 4.3
75
Thermal Shock Resistance, points 11
15 to 20

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
95.7 to 99.47
Iron (Fe), % 61.8 to 73
0.020 to 0.5
Magnesium (Mg), % 0
0.1 to 1.0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 9.0 to 12
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0.010 to 0.1
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0.1 to 1.0
Zinc (Zn), % 0
0.3 to 1.5
Residuals, % 0
0 to 0.2