MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8C Steel vs. C70700 Copper-nickel

ACI-ASTM CF8C steel belongs to the iron alloys classification, while C70700 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8C steel and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
73
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 40
39
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
46
Tensile Strength: Ultimate (UTS), MPa 530
320
Tensile Strength: Yield (Proof), MPa 260
110

Thermal Properties

Latent Heat of Fusion, J/g 300
220
Maximum Temperature: Mechanical, °C 980
220
Melting Completion (Liquidus), °C 1420
1120
Melting Onset (Solidus), °C 1430
1060
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
59
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 19
34
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.7
3.4
Embodied Energy, MJ/kg 53
52
Embodied Water, L/kg 150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
100
Resilience: Unit (Modulus of Resilience), kJ/m3 170
51
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19
10
Strength to Weight: Bending, points 19
12
Thermal Diffusivity, mm2/s 4.3
17
Thermal Shock Resistance, points 11
12

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
88.5 to 90.5
Iron (Fe), % 61.8 to 73
0 to 0.050
Manganese (Mn), % 0 to 1.5
0 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 9.0 to 12
9.5 to 10.5
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5