MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8C Steel vs. C82500 Copper

ACI-ASTM CF8C steel belongs to the iron alloys classification, while C82500 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8C steel and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 40
1.0 to 20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
45
Tensile Strength: Ultimate (UTS), MPa 530
550 to 1100
Tensile Strength: Yield (Proof), MPa 260
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Maximum Temperature: Mechanical, °C 980
280
Melting Completion (Liquidus), °C 1420
980
Melting Onset (Solidus), °C 1430
860
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
21

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 3.7
10
Embodied Energy, MJ/kg 53
160
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 170
400 to 4000
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19
18 to 35
Strength to Weight: Bending, points 19
17 to 27
Thermal Diffusivity, mm2/s 4.3
38
Thermal Shock Resistance, points 11
19 to 38

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.9 to 2.3
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 21
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 0
95.3 to 97.8
Iron (Fe), % 61.8 to 73
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 9.0 to 12
0 to 0.2
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0.2 to 0.35
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5