MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8C Steel vs. C84100 Brass

ACI-ASTM CF8C steel belongs to the iron alloys classification, while C84100 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8C steel and the bottom bar is C84100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
65
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
13
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
39
Tensile Strength: Ultimate (UTS), MPa 530
230
Tensile Strength: Yield (Proof), MPa 260
81

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1420
1000
Melting Onset (Solidus), °C 1430
810
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
110
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
23
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
25

Otherwise Unclassified Properties

Base Metal Price, % relative 19
29
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 3.7
2.9
Embodied Energy, MJ/kg 53
48
Embodied Water, L/kg 150
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
24
Resilience: Unit (Modulus of Resilience), kJ/m3 170
30
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19
7.4
Strength to Weight: Bending, points 19
9.7
Thermal Diffusivity, mm2/s 4.3
33
Thermal Shock Resistance, points 11
7.8

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Bismuth (Bi), % 0
0 to 0.090
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
78 to 85
Iron (Fe), % 61.8 to 73
0 to 0.3
Lead (Pb), % 0
0.050 to 0.25
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 9.0 to 12
0 to 0.5
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 2.0
0 to 0.010
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
1.5 to 4.5
Zinc (Zn), % 0
12 to 20
Residuals, % 0
0 to 0.5