MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8C Steel vs. C84400 Valve Metal

ACI-ASTM CF8C steel belongs to the iron alloys classification, while C84400 valve metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8C steel and the bottom bar is C84400 valve metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 40
19
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
39
Tensile Strength: Ultimate (UTS), MPa 530
230
Tensile Strength: Yield (Proof), MPa 260
110

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1420
1000
Melting Onset (Solidus), °C 1430
840
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 16
72
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
17

Otherwise Unclassified Properties

Base Metal Price, % relative 19
29
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 3.7
2.8
Embodied Energy, MJ/kg 53
46
Embodied Water, L/kg 150
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
36
Resilience: Unit (Modulus of Resilience), kJ/m3 170
58
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19
7.2
Strength to Weight: Bending, points 19
9.4
Thermal Diffusivity, mm2/s 4.3
22
Thermal Shock Resistance, points 11
8.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
78 to 82
Iron (Fe), % 61.8 to 73
0 to 0.4
Lead (Pb), % 0
6.0 to 8.0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 9.0 to 12
0 to 1.0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 2.0
0 to 0.0050
Sulfur (S), % 0 to 0.040
0 to 0.080
Tin (Sn), % 0
2.3 to 3.5
Zinc (Zn), % 0
7.0 to 10
Residuals, % 0
0 to 0.7