MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8C Steel vs. C87400 Brass

ACI-ASTM CF8C steel belongs to the iron alloys classification, while C87400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8C steel and the bottom bar is C87400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
21
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
41
Tensile Strength: Ultimate (UTS), MPa 530
390
Tensile Strength: Yield (Proof), MPa 260
160

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1420
920
Melting Onset (Solidus), °C 1430
820
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 16
28
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
7.2

Otherwise Unclassified Properties

Base Metal Price, % relative 19
27
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.7
2.7
Embodied Energy, MJ/kg 53
44
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
65
Resilience: Unit (Modulus of Resilience), kJ/m3 170
120
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19
13
Strength to Weight: Bending, points 19
14
Thermal Diffusivity, mm2/s 4.3
8.3
Thermal Shock Resistance, points 11
14

Alloy Composition

Aluminum (Al), % 0
0 to 0.8
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
79 to 85.5
Iron (Fe), % 61.8 to 73
0
Lead (Pb), % 0
0 to 1.0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 9.0 to 12
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
2.5 to 4.0
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.8