MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8C Steel vs. R30075 Cobalt

ACI-ASTM CF8C steel belongs to the iron alloys classification, while R30075 cobalt belongs to the cobalt alloys. They have a modest 21% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8C steel and the bottom bar is R30075 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210 to 250
Elongation at Break, % 40
12
Fatigue Strength, MPa 220
250 to 840
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
82 to 98
Tensile Strength: Ultimate (UTS), MPa 530
780 to 1280
Tensile Strength: Yield (Proof), MPa 260
480 to 840

Thermal Properties

Latent Heat of Fusion, J/g 300
320
Melting Completion (Liquidus), °C 1420
1360
Melting Onset (Solidus), °C 1430
1290
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 16
13
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.1

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 3.7
8.1
Embodied Energy, MJ/kg 53
110
Embodied Water, L/kg 150
530

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
84 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 170
560 to 1410
Stiffness to Weight: Axial, points 14
14 to 17
Stiffness to Weight: Bending, points 25
24 to 25
Strength to Weight: Axial, points 19
26 to 42
Strength to Weight: Bending, points 19
22 to 31
Thermal Diffusivity, mm2/s 4.3
3.5
Thermal Shock Resistance, points 11
21 to 29

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.080
0 to 0.35
Chromium (Cr), % 18 to 21
27 to 30
Cobalt (Co), % 0
58.7 to 68
Iron (Fe), % 61.8 to 73
0 to 0.75
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
5.0 to 7.0
Nickel (Ni), % 9.0 to 12
0 to 0.5
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0
0 to 0.2