MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8M Steel vs. Nickel 693

ACI-ASTM CF8M steel belongs to the iron alloys classification, while nickel 693 belongs to the nickel alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8M steel and the bottom bar is nickel 693.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 50
34
Fatigue Strength, MPa 280
230
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Tensile Strength: Ultimate (UTS), MPa 540
660
Tensile Strength: Yield (Proof), MPa 290
310

Thermal Properties

Latent Heat of Fusion, J/g 300
330
Maximum Temperature: Mechanical, °C 1000
1010
Melting Completion (Liquidus), °C 1440
1350
Melting Onset (Solidus), °C 1400
1310
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
9.1
Thermal Expansion, µm/m-K 16
13

Otherwise Unclassified Properties

Base Metal Price, % relative 19
60
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 3.8
9.9
Embodied Energy, MJ/kg 53
140
Embodied Water, L/kg 160
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
190
Resilience: Unit (Modulus of Resilience), kJ/m3 210
250
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
23
Strength to Weight: Bending, points 19
21
Thermal Diffusivity, mm2/s 4.3
2.3
Thermal Shock Resistance, points 12
19

Alloy Composition

Aluminum (Al), % 0
2.5 to 4.0
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 18 to 21
27 to 31
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 60.3 to 71
2.5 to 6.0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 9.0 to 12
53.3 to 67.5
Niobium (Nb), % 0
0.5 to 2.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.010
Titanium (Ti), % 0
0 to 1.0