MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. EN 1.4594 Stainless Steel

Both ACI-ASTM CH20 steel and EN 1.4594 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is EN 1.4594 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 38
11 to 17
Fatigue Strength, MPa 290
490 to 620
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
76
Tensile Strength: Ultimate (UTS), MPa 610
1020 to 1170
Tensile Strength: Yield (Proof), MPa 350
810 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Corrosion, °C 440
450
Maximum Temperature: Mechanical, °C 1100
820
Melting Completion (Liquidus), °C 1410
1450
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 14
16
Thermal Expansion, µm/m-K 15
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 20
15
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.7
3.2
Embodied Energy, MJ/kg 53
45
Embodied Water, L/kg 180
130

Common Calculations

PREN (Pitting Resistance) 25
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 300
1660 to 3320
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
36 to 41
Strength to Weight: Bending, points 21
29 to 31
Thermal Diffusivity, mm2/s 3.7
4.4
Thermal Shock Resistance, points 15
34 to 39

Alloy Composition

Carbon (C), % 0 to 0.2
0 to 0.070
Chromium (Cr), % 22 to 26
13 to 15
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 54.7 to 66
72.6 to 79.5
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
1.2 to 2.0
Nickel (Ni), % 12 to 15
5.0 to 6.0
Niobium (Nb), % 0
0.15 to 0.6
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 2.0
0 to 0.7
Sulfur (S), % 0 to 0.040
0 to 0.015