MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. S82013 Stainless Steel

Both ACI-ASTM CH20 steel and S82013 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is S82013 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
260
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 38
34
Fatigue Strength, MPa 290
400
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
78
Tensile Strength: Ultimate (UTS), MPa 610
710
Tensile Strength: Yield (Proof), MPa 350
500

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 440
430
Maximum Temperature: Mechanical, °C 1100
970
Melting Completion (Liquidus), °C 1410
1420
Melting Onset (Solidus), °C 1430
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 14
15
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 20
11
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.7
2.4
Embodied Energy, MJ/kg 53
34
Embodied Water, L/kg 180
140

Common Calculations

PREN (Pitting Resistance) 25
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
220
Resilience: Unit (Modulus of Resilience), kJ/m3 300
640
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
26
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 3.7
4.0
Thermal Shock Resistance, points 15
20

Alloy Composition

Carbon (C), % 0 to 0.2
0 to 0.060
Chromium (Cr), % 22 to 26
19.5 to 22
Copper (Cu), % 0
0.2 to 1.2
Iron (Fe), % 54.7 to 66
70.5 to 77.1
Manganese (Mn), % 0 to 1.5
2.5 to 3.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 12 to 15
0.5 to 1.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 2.0
0 to 0.9
Sulfur (S), % 0 to 0.040
0 to 0.030