MakeItFrom.com
Menu (ESC)

ACI-ASTM CK3MCuN Steel vs. A357.0 Aluminum

ACI-ASTM CK3MCuN steel belongs to the iron alloys classification, while A357.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CK3MCuN steel and the bottom bar is A357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
100
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 39
3.7
Fatigue Strength, MPa 250
100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 620
350
Tensile Strength: Yield (Proof), MPa 290
270

Thermal Properties

Latent Heat of Fusion, J/g 300
500
Maximum Temperature: Mechanical, °C 1090
170
Melting Completion (Liquidus), °C 1460
610
Melting Onset (Solidus), °C 1350
560
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
160
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
140

Otherwise Unclassified Properties

Base Metal Price, % relative 29
12
Density, g/cm3 8.0
2.6
Embodied Carbon, kg CO2/kg material 5.6
8.2
Embodied Energy, MJ/kg 76
150
Embodied Water, L/kg 190
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
12
Resilience: Unit (Modulus of Resilience), kJ/m3 210
520
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 21
38
Strength to Weight: Bending, points 20
43
Thermal Diffusivity, mm2/s 3.2
68
Thermal Shock Resistance, points 14
17

Alloy Composition

Aluminum (Al), % 0
90.8 to 93
Beryllium (Be), % 0
0.040 to 0.070
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 19.5 to 20.5
0
Copper (Cu), % 0.5 to 1.0
0 to 0.2
Iron (Fe), % 49.5 to 56.3
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0 to 1.2
0 to 0.1
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 17.5 to 19.5
0
Nitrogen (N), % 0.18 to 0.24
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
6.5 to 7.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0.040 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15