MakeItFrom.com
Menu (ESC)

ACI-ASTM CN3M Steel vs. C12600 Copper

ACI-ASTM CN3M steel belongs to the iron alloys classification, while C12600 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CN3M steel and the bottom bar is C12600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
56
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 80
56
Tensile Strength: Ultimate (UTS), MPa 500
270
Tensile Strength: Yield (Proof), MPa 190
69

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
29
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
29

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 5.9
2.6
Embodied Energy, MJ/kg 80
41
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 89
21
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 17
8.2
Strength to Weight: Bending, points 17
10
Thermal Diffusivity, mm2/s 3.4
39
Thermal Shock Resistance, points 11
9.5

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 22
0
Copper (Cu), % 0
99.5 to 99.8
Iron (Fe), % 42.4 to 52.5
0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 4.5 to 5.5
0
Nickel (Ni), % 23 to 27
0
Phosphorus (P), % 0 to 0.030
0.2 to 0.4
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0