MakeItFrom.com
Menu (ESC)

AISI 301LN Stainless Steel vs. C61400 Bronze

AISI 301LN stainless steel belongs to the iron alloys classification, while C61400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 301LN stainless steel and the bottom bar is C61400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23 to 51
34 to 40
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Shear Strength, MPa 450 to 670
370 to 380
Tensile Strength: Ultimate (UTS), MPa 630 to 1060
540 to 570
Tensile Strength: Yield (Proof), MPa 270 to 770
220 to 270

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 890
220
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1380
1040
Specific Heat Capacity, J/kg-K 480
420
Thermal Conductivity, W/m-K 15
67
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
14
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
15

Otherwise Unclassified Properties

Base Metal Price, % relative 13
28
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 39
48
Embodied Water, L/kg 130
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 290
160 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1520
210 to 310
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22 to 38
18 to 19
Strength to Weight: Bending, points 21 to 30
17 to 18
Thermal Diffusivity, mm2/s 4.0
19
Thermal Shock Resistance, points 14 to 24
18 to 20

Alloy Composition

Aluminum (Al), % 0
6.0 to 8.0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
86 to 92.5
Iron (Fe), % 70.7 to 77.9
1.5 to 3.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.0
0 to 1.0
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0.070 to 0.2
0
Phosphorus (P), % 0 to 0.045
0 to 0.015
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5