MakeItFrom.com
Menu (ESC)

AISI 304 Stainless Steel vs. S15700 Stainless Steel

Both AISI 304 stainless steel and S15700 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 304 stainless steel and the bottom bar is S15700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 360
200 to 460
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 8.0 to 43
1.1 to 29
Fatigue Strength, MPa 210 to 440
370 to 770
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 400 to 690
770 to 1070
Tensile Strength: Ultimate (UTS), MPa 580 to 1180
1180 to 1890
Tensile Strength: Yield (Proof), MPa 230 to 860
500 to 1770

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 420
400
Maximum Temperature: Mechanical, °C 710
870
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 15
15
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
3.4
Embodied Energy, MJ/kg 43
47
Embodied Water, L/kg 150
140

Common Calculations

PREN (Pitting Resistance) 20
23
Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 250
17 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1870
640 to 4660
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 42
42 to 67
Strength to Weight: Bending, points 20 to 32
32 to 43
Thermal Diffusivity, mm2/s 4.2
4.2
Thermal Shock Resistance, points 12 to 25
39 to 63

Alloy Composition

Aluminum (Al), % 0
0.75 to 1.5
Carbon (C), % 0 to 0.080
0 to 0.090
Chromium (Cr), % 18 to 20
14 to 16
Iron (Fe), % 66.5 to 74
69.6 to 76.8
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 8.0 to 10.5
6.5 to 7.7
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030

Comparable Variants