MakeItFrom.com
Menu (ESC)

AISI 309HCb Stainless Steel vs. S44401 Stainless Steel

Both AISI 309HCb stainless steel and S44401 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 81% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 309HCb stainless steel and the bottom bar is S44401 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
21
Fatigue Strength, MPa 210
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
78
Shear Strength, MPa 410
300
Tensile Strength: Ultimate (UTS), MPa 590
480
Tensile Strength: Yield (Proof), MPa 230
300

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 510
510
Maximum Temperature: Mechanical, °C 1090
930
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
22
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.1
2.9
Embodied Energy, MJ/kg 59
40
Embodied Water, L/kg 170
130

Common Calculations

PREN (Pitting Resistance) 23
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
90
Resilience: Unit (Modulus of Resilience), kJ/m3 130
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
17
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 4.0
5.9
Thermal Shock Resistance, points 13
17

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.025
Chromium (Cr), % 22 to 24
17.5 to 19.5
Iron (Fe), % 56 to 66
75.1 to 80.6
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 12 to 16
0 to 1.0
Niobium (Nb), % 0 to 1.1
0
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8