MakeItFrom.com
Menu (ESC)

AISI 310MoLN Stainless Steel vs. AISI 316LN Stainless Steel

Both AISI 310MoLN stainless steel and AISI 316LN stainless steel are iron alloys. Both are furnished in the annealed condition. They have 82% of their average alloy composition in common. There are 35 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 310MoLN stainless steel and the bottom bar is AISI 316LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
42
Fatigue Strength, MPa 210
200
Poisson's Ratio 0.28
0.28
Reduction in Area, % 45
51
Rockwell B Hardness 84
80
Shear Modulus, GPa 80
82
Shear Strength, MPa 400
410
Tensile Strength: Ultimate (UTS), MPa 610
590
Tensile Strength: Yield (Proof), MPa 290
230

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 450
410
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 14
15
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
19
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 5.0
3.8
Embodied Energy, MJ/kg 70
53
Embodied Water, L/kg 200
150

Common Calculations

PREN (Pitting Resistance) 34
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
200
Resilience: Unit (Modulus of Resilience), kJ/m3 200
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
21
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 3.7
4.1
Thermal Shock Resistance, points 14
13

Alloy Composition

Carbon (C), % 0 to 0.020
0 to 0.030
Chromium (Cr), % 24 to 26
16 to 18
Iron (Fe), % 45.2 to 53.8
62 to 71.9
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 1.6 to 2.6
2.0 to 3.0
Nickel (Ni), % 20.5 to 23.5
10 to 14
Nitrogen (N), % 0.090 to 0.15
0.1 to 0.16
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 0.75
Sulfur (S), % 0 to 0.010
0 to 0.030