MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. EN 1.8523 Steel

Both AISI 310S stainless steel and EN 1.8523 steel are iron alloys. They have 57% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is EN 1.8523 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 210
300
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34 to 44
15
Fatigue Strength, MPa 250 to 280
530
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
74
Shear Strength, MPa 420 to 470
610
Tensile Strength: Ultimate (UTS), MPa 600 to 710
1000
Tensile Strength: Yield (Proof), MPa 270 to 350
800

Thermal Properties

Latent Heat of Fusion, J/g 310
260
Maximum Temperature: Mechanical, °C 1100
480
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
39
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 25
4.2
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.3
2.2
Embodied Energy, MJ/kg 61
31
Embodied Water, L/kg 190
64

Common Calculations

PREN (Pitting Resistance) 25
6.4
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
140
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 310
1700
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21 to 25
36
Strength to Weight: Bending, points 20 to 22
28
Thermal Diffusivity, mm2/s 4.1
10
Thermal Shock Resistance, points 14 to 16
29

Alloy Composition

Carbon (C), % 0 to 0.080
0.35 to 0.45
Chromium (Cr), % 24 to 26
3.0 to 3.5
Iron (Fe), % 48.3 to 57
93.5 to 95.7
Manganese (Mn), % 0 to 2.0
0.4 to 0.7
Molybdenum (Mo), % 0
0.8 to 1.1
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 1.5
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.035
Vanadium (V), % 0
0.15 to 0.25