MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. C90400 Bronze

AISI 310S stainless steel belongs to the iron alloys classification, while C90400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 210
77
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34 to 44
24
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
41
Tensile Strength: Ultimate (UTS), MPa 600 to 710
310
Tensile Strength: Yield (Proof), MPa 270 to 350
180

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1450
990
Melting Onset (Solidus), °C 1400
850
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 16
75
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 25
34
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 4.3
3.5
Embodied Energy, MJ/kg 61
56
Embodied Water, L/kg 190
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
65
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 310
150
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21 to 25
10
Strength to Weight: Bending, points 20 to 22
12
Thermal Diffusivity, mm2/s 4.1
23
Thermal Shock Resistance, points 14 to 16
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 48.3 to 57
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 2.0
0 to 0.010
Nickel (Ni), % 19 to 22
0 to 1.0
Phosphorus (P), % 0 to 0.045
0 to 0.050
Silicon (Si), % 0 to 1.5
0 to 0.0050
Sulfur (S), % 0 to 0.030
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7