MakeItFrom.com
Menu (ESC)

AISI 312 Stainless Steel vs. ACI-ASTM CF8C Steel

Both AISI 312 stainless steel and ACI-ASTM CF8C steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 312 stainless steel and the bottom bar is ACI-ASTM CF8C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
150
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
40
Fatigue Strength, MPa 370
220
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
77
Tensile Strength: Ultimate (UTS), MPa 780
530
Tensile Strength: Yield (Proof), MPa 510
260

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 450
490
Maximum Temperature: Mechanical, °C 1100
980
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1390
1430
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
16
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 17
19
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.4
3.7
Embodied Energy, MJ/kg 48
53
Embodied Water, L/kg 170
150

Common Calculations

PREN (Pitting Resistance) 33
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
180
Resilience: Unit (Modulus of Resilience), kJ/m3 640
170
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
19
Strength to Weight: Bending, points 24
19
Thermal Diffusivity, mm2/s 4.3
4.3
Thermal Shock Resistance, points 21
11

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 24 to 26
18 to 21
Iron (Fe), % 62.2 to 69.2
61.8 to 73
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 1.2 to 2.0
0 to 0.5
Nickel (Ni), % 5.5 to 6.5
9.0 to 12
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0.14 to 0.2
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.040