MakeItFrom.com
Menu (ESC)

AISI 316Cb Stainless Steel vs. C90400 Bronze

AISI 316Cb stainless steel belongs to the iron alloys classification, while C90400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 316Cb stainless steel and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
77
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
24
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
41
Tensile Strength: Ultimate (UTS), MPa 580
310
Tensile Strength: Yield (Proof), MPa 230
180

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1450
990
Melting Onset (Solidus), °C 1410
850
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 15
75
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 22
34
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 4.4
3.5
Embodied Energy, MJ/kg 61
56
Embodied Water, L/kg 150
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
65
Resilience: Unit (Modulus of Resilience), kJ/m3 130
150
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 20
10
Strength to Weight: Bending, points 20
12
Thermal Diffusivity, mm2/s 4.1
23
Thermal Shock Resistance, points 13
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 60.9 to 72
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 2.0
0 to 0.010
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0 to 1.0
Niobium (Nb), % 0 to 1.1
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.050
Silicon (Si), % 0 to 0.75
0 to 0.0050
Sulfur (S), % 0 to 0.030
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7