MakeItFrom.com
Menu (ESC)

AISI 316LN Stainless Steel vs. AISI 310HCb Stainless Steel

Both AISI 316LN stainless steel and AISI 310HCb stainless steel are iron alloys. Both are furnished in the annealed condition. They have 83% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 316LN stainless steel and the bottom bar is AISI 310HCb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 42
46
Fatigue Strength, MPa 200
210
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 80
82
Shear Modulus, GPa 82
78
Shear Strength, MPa 410
410
Tensile Strength: Ultimate (UTS), MPa 590
590
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 410
520
Maximum Temperature: Mechanical, °C 940
1100
Melting Completion (Liquidus), °C 1450
1410
Melting Onset (Solidus), °C 1380
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
28
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 3.8
4.8
Embodied Energy, MJ/kg 53
69
Embodied Water, L/kg 150
190

Common Calculations

PREN (Pitting Resistance) 27
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
210
Resilience: Unit (Modulus of Resilience), kJ/m3 130
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
21
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 4.1
3.9
Thermal Shock Resistance, points 13
13

Alloy Composition

Carbon (C), % 0 to 0.030
0.040 to 0.1
Chromium (Cr), % 16 to 18
24 to 26
Iron (Fe), % 62 to 71.9
48 to 57
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
19 to 22
Niobium (Nb), % 0
0 to 1.1
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030