MakeItFrom.com
Menu (ESC)

AISI 316LN Stainless Steel vs. AISI 316L Stainless Steel

Both AISI 316LN stainless steel and AISI 316L stainless steel are iron alloys. Their average alloy composition is basically identical. There are 35 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 316LN stainless steel and the bottom bar is AISI 316L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170 to 350
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 42
9.0 to 50
Fatigue Strength, MPa 200
170 to 450
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 80
80
Shear Modulus, GPa 82
78
Shear Strength, MPa 410
370 to 690
Tensile Strength: Ultimate (UTS), MPa 590
530 to 1160
Tensile Strength: Yield (Proof), MPa 230
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 410
410
Maximum Temperature: Mechanical, °C 940
870
Melting Completion (Liquidus), °C 1450
1400
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
19
Calomel Potential, mV -40
-50
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 3.8
3.9
Embodied Energy, MJ/kg 53
53
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 27
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
77 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 130
93 to 1880
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
19 to 41
Strength to Weight: Bending, points 20
18 to 31
Thermal Diffusivity, mm2/s 4.1
4.1
Thermal Shock Resistance, points 13
12 to 25

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 16 to 18
16 to 18
Iron (Fe), % 62 to 71.9
62 to 72
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.0 to 3.0
2.0 to 3.0
Nickel (Ni), % 10 to 14
10 to 14
Nitrogen (N), % 0.1 to 0.16
0 to 0.1
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030