AISI 316LN Stainless Steel vs. AWS BCo-1
AISI 316LN stainless steel belongs to the iron alloys classification, while AWS BCo-1 belongs to the cobalt alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 18 material properties with values for both materials. Properties with values for just one material (19, in this case) are not shown.
For each property being compared, the top bar is AISI 316LN stainless steel and the bottom bar is AWS BCo-1.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
200 |
Poisson's Ratio | 0.28 | |
0.3 |
Shear Modulus, GPa | 82 | |
78 |
Tensile Strength: Ultimate (UTS), MPa | 590 | |
700 |
Thermal Properties
Latent Heat of Fusion, J/g | 290 | |
420 |
Melting Completion (Liquidus), °C | 1450 | |
1150 |
Melting Onset (Solidus), °C | 1380 | |
1120 |
Specific Heat Capacity, J/kg-K | 470 | |
480 |
Thermal Expansion, µm/m-K | 17 | |
12 |
Otherwise Unclassified Properties
Density, g/cm3 | 7.9 | |
8.1 |
Embodied Carbon, kg CO2/kg material | 3.8 | |
8.0 |
Embodied Energy, MJ/kg | 53 | |
110 |
Embodied Water, L/kg | 150 | |
430 |
Common Calculations
Stiffness to Weight: Axial, points | 14 | |
14 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 21 | |
24 |
Strength to Weight: Bending, points | 20 | |
22 |
Thermal Shock Resistance, points | 13 | |
21 |
Alloy Composition
Aluminum (Al), % | 0 | |
0 to 0.050 |
Boron (B), % | 0 | |
0.7 to 0.9 |
Carbon (C), % | 0 to 0.030 | |
0.35 to 0.45 |
Chromium (Cr), % | 16 to 18 | |
18 to 20 |
Cobalt (Co), % | 0 | |
46 to 54 |
Iron (Fe), % | 62 to 71.9 | |
0 to 1.0 |
Manganese (Mn), % | 0 to 2.0 | |
0 |
Molybdenum (Mo), % | 2.0 to 3.0 | |
0 |
Nickel (Ni), % | 10 to 14 | |
16 to 18 |
Nitrogen (N), % | 0.1 to 0.16 | |
0 |
Phosphorus (P), % | 0 to 0.045 | |
0 to 0.020 |
Selenium (Se), % | 0 | |
0 to 0.0050 |
Silicon (Si), % | 0 to 0.75 | |
7.5 to 8.5 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.020 |
Titanium (Ti), % | 0 | |
0 to 0.050 |
Tungsten (W), % | 0 | |
3.5 to 4.5 |
Zirconium (Zr), % | 0 | |
0 to 0.050 |
Residuals, % | 0 | |
0 to 0.5 |