MakeItFrom.com
Menu (ESC)

AISI 316LN Stainless Steel vs. AWS E80C-W2

Both AISI 316LN stainless steel and AWS E80C-W2 are iron alloys. They have 69% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AISI 316LN stainless steel and the bottom bar is AWS E80C-W2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 42
25
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 82
72
Tensile Strength: Ultimate (UTS), MPa 590
620
Tensile Strength: Yield (Proof), MPa 230
540

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 19
2.6
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.5
Embodied Energy, MJ/kg 53
20
Embodied Water, L/kg 150
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
150
Resilience: Unit (Modulus of Resilience), kJ/m3 130
770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 4.1
10
Thermal Shock Resistance, points 13
18

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.12
Chromium (Cr), % 16 to 18
0.45 to 0.7
Copper (Cu), % 0
0.3 to 0.75
Iron (Fe), % 62 to 71.9
94.9 to 98
Manganese (Mn), % 0 to 2.0
0.5 to 1.3
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0.4 to 0.8
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 0.75
0.35 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5