MakeItFrom.com
Menu (ESC)

AISI 316LN Stainless Steel vs. EN AC-46500 Aluminum

AISI 316LN stainless steel belongs to the iron alloys classification, while EN AC-46500 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 316LN stainless steel and the bottom bar is EN AC-46500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
91
Elastic (Young's, Tensile) Modulus, GPa 200
74
Elongation at Break, % 42
1.0
Fatigue Strength, MPa 200
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
28
Tensile Strength: Ultimate (UTS), MPa 590
270
Tensile Strength: Yield (Proof), MPa 230
160

Thermal Properties

Latent Heat of Fusion, J/g 290
520
Maximum Temperature: Mechanical, °C 940
180
Melting Completion (Liquidus), °C 1450
610
Melting Onset (Solidus), °C 1380
520
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 15
100
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
81

Otherwise Unclassified Properties

Base Metal Price, % relative 19
10
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 3.8
7.6
Embodied Energy, MJ/kg 53
140
Embodied Water, L/kg 150
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 130
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 21
26
Strength to Weight: Bending, points 20
32
Thermal Diffusivity, mm2/s 4.1
41
Thermal Shock Resistance, points 13
12

Alloy Composition

Aluminum (Al), % 0
77.9 to 90
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0 to 0.15
Copper (Cu), % 0
2.0 to 4.0
Iron (Fe), % 62 to 71.9
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 0
0.050 to 0.55
Manganese (Mn), % 0 to 2.0
0 to 0.55
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0 to 0.55
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
8.0 to 11
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.25