MakeItFrom.com
Menu (ESC)

AISI 316LN Stainless Steel vs. SAE-AISI 8630 Steel

Both AISI 316LN stainless steel and SAE-AISI 8630 steel are iron alloys. They have 69% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 316LN stainless steel and the bottom bar is SAE-AISI 8630 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
160 to 200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 42
12 to 24
Fatigue Strength, MPa 200
260 to 350
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 82
73
Shear Strength, MPa 410
340 to 410
Tensile Strength: Ultimate (UTS), MPa 590
540 to 680
Tensile Strength: Yield (Proof), MPa 230
360 to 560

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 940
410
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
39
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
2.6
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.5
Embodied Energy, MJ/kg 53
20
Embodied Water, L/kg 150
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
78 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 130
340 to 840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
19 to 24
Strength to Weight: Bending, points 20
19 to 22
Thermal Diffusivity, mm2/s 4.1
10
Thermal Shock Resistance, points 13
18 to 23

Alloy Composition

Carbon (C), % 0 to 0.030
0.28 to 0.33
Chromium (Cr), % 16 to 18
0.4 to 0.6
Iron (Fe), % 62 to 71.9
96.8 to 97.9
Manganese (Mn), % 0 to 2.0
0.7 to 0.9
Molybdenum (Mo), % 2.0 to 3.0
0.15 to 0.25
Nickel (Ni), % 10 to 14
0.4 to 0.7
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 0.75
0.15 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.040