MakeItFrom.com
Menu (ESC)

AISI 316LN Stainless Steel vs. S30435 Stainless Steel

Both AISI 316LN stainless steel and S30435 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 93% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 316LN stainless steel and the bottom bar is S30435 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 42
51
Fatigue Strength, MPa 200
170
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 80
77
Shear Modulus, GPa 82
76
Shear Strength, MPa 410
370
Tensile Strength: Ultimate (UTS), MPa 590
510
Tensile Strength: Yield (Proof), MPa 230
170

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 410
410
Maximum Temperature: Mechanical, °C 940
900
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 19
14
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
2.9
Embodied Energy, MJ/kg 53
40
Embodied Water, L/kg 150
140

Common Calculations

PREN (Pitting Resistance) 27
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
210
Resilience: Unit (Modulus of Resilience), kJ/m3 130
77
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 4.1
4.2
Thermal Shock Resistance, points 13
12

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 16 to 18
16 to 18
Copper (Cu), % 0
1.5 to 3.0
Iron (Fe), % 62 to 71.9
66.9 to 75.5
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
7.0 to 9.0
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030