MakeItFrom.com
Menu (ESC)

AISI 316N Stainless Steel vs. ASTM A182 Grade F3VCb

Both AISI 316N stainless steel and ASTM A182 grade F3VCb are iron alloys. They have 72% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 316N stainless steel and the bottom bar is ASTM A182 grade F3VCb.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 350
210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 9.0 to 39
21
Fatigue Strength, MPa 230 to 450
320
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
74
Shear Strength, MPa 420 to 690
420
Tensile Strength: Ultimate (UTS), MPa 620 to 1160
670
Tensile Strength: Yield (Proof), MPa 270 to 870
460

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 940
470
Melting Completion (Liquidus), °C 1440
1470
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
40
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 19
4.5
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 3.9
2.4
Embodied Energy, MJ/kg 53
33
Embodied Water, L/kg 150
64

Common Calculations

PREN (Pitting Resistance) 27
6.3
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 230
120
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1880
570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22 to 41
24
Strength to Weight: Bending, points 20 to 31
22
Thermal Diffusivity, mm2/s 4.1
11
Thermal Shock Resistance, points 14 to 26
19

Alloy Composition

Calcium (Ca), % 0
0.00050 to 0.015
Carbon (C), % 0 to 0.080
0.1 to 0.15
Chromium (Cr), % 16 to 18
2.7 to 3.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 61.9 to 71.9
93.8 to 95.8
Manganese (Mn), % 0 to 2.0
0.3 to 0.6
Molybdenum (Mo), % 2.0 to 3.0
0.9 to 1.1
Nickel (Ni), % 10 to 14
0 to 0.25
Niobium (Nb), % 0
0.015 to 0.070
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.75
0 to 0.1
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.015
Vanadium (V), % 0
0.2 to 0.3