MakeItFrom.com
Menu (ESC)

AISI 316N Stainless Steel vs. EN 1.4470 Stainless Steel

Both AISI 316N stainless steel and EN 1.4470 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 316N stainless steel and the bottom bar is EN 1.4470 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 9.0 to 39
23
Fatigue Strength, MPa 230 to 450
320
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
80
Tensile Strength: Ultimate (UTS), MPa 620 to 1160
680
Tensile Strength: Yield (Proof), MPa 270 to 870
480

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 410
430
Maximum Temperature: Mechanical, °C 940
1060
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
18
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
17
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.9
3.6
Embodied Energy, MJ/kg 53
49
Embodied Water, L/kg 150
160

Common Calculations

PREN (Pitting Resistance) 27
34
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 230
140
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1880
570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22 to 41
24
Strength to Weight: Bending, points 20 to 31
22
Thermal Diffusivity, mm2/s 4.1
4.8
Thermal Shock Resistance, points 14 to 26
18

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 16 to 18
21 to 23
Iron (Fe), % 61.9 to 71.9
63.7 to 71.9
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.0 to 3.0
2.5 to 3.5
Nickel (Ni), % 10 to 14
4.5 to 6.5
Nitrogen (N), % 0.1 to 0.16
0.12 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.025