MakeItFrom.com
Menu (ESC)

AISI 316Ti Stainless Steel vs. EN 1.4011 Stainless Steel

Both AISI 316Ti stainless steel and EN 1.4011 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 316Ti stainless steel and the bottom bar is EN 1.4011 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 41
17
Fatigue Strength, MPa 200
310
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 82
76
Tensile Strength: Ultimate (UTS), MPa 580
700
Tensile Strength: Yield (Proof), MPa 230
510

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 470
390
Maximum Temperature: Mechanical, °C 940
750
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
25
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
7.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.0
2.0
Embodied Energy, MJ/kg 55
28
Embodied Water, L/kg 150
100

Common Calculations

PREN (Pitting Resistance) 26
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
660
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 4.0
6.7
Thermal Shock Resistance, points 13
24

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 16 to 18
11.5 to 13.5
Iron (Fe), % 61.3 to 72
82.8 to 88.5
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0 to 0.5
Nickel (Ni), % 10 to 14
0 to 1.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 0 to 0.7
0