MakeItFrom.com
Menu (ESC)

AISI 321H Stainless Steel vs. C94100 Bronze

AISI 321H stainless steel belongs to the iron alloys classification, while C94100 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AISI 321H stainless steel and the bottom bar is C94100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
92
Elongation at Break, % 40
7.8
Poisson's Ratio 0.28
0.36
Shear Modulus, GPa 77
34
Tensile Strength: Ultimate (UTS), MPa 580
190
Tensile Strength: Yield (Proof), MPa 230
130

Thermal Properties

Latent Heat of Fusion, J/g 290
160
Maximum Temperature: Mechanical, °C 940
130
Melting Completion (Liquidus), °C 1430
870
Melting Onset (Solidus), °C 1380
790
Specific Heat Capacity, J/kg-K 480
330
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 16
29
Density, g/cm3 7.8
9.2
Embodied Carbon, kg CO2/kg material 3.2
3.0
Embodied Energy, MJ/kg 46
48
Embodied Water, L/kg 140
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
14
Resilience: Unit (Modulus of Resilience), kJ/m3 140
97
Stiffness to Weight: Axial, points 14
5.5
Stiffness to Weight: Bending, points 25
16
Strength to Weight: Axial, points 21
5.8
Strength to Weight: Bending, points 20
8.1
Thermal Shock Resistance, points 12
7.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
72 to 79
Iron (Fe), % 65.4 to 74
0 to 0.25
Lead (Pb), % 0
18 to 22
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 9.0 to 12
0 to 1.0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 0.75
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
4.5 to 6.5
Titanium (Ti), % 0 to 0.7
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 1.3