MakeItFrom.com
Menu (ESC)

AISI 348H Stainless Steel vs. EN 1.4408 Stainless Steel

Both AISI 348H stainless steel and EN 1.4408 stainless steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 348H stainless steel and the bottom bar is EN 1.4408 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
150
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
34
Fatigue Strength, MPa 200
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Tensile Strength: Ultimate (UTS), MPa 580
510
Tensile Strength: Yield (Proof), MPa 230
210

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 500
420
Maximum Temperature: Mechanical, °C 940
990
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1390
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 20
18
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.9
3.7
Embodied Energy, MJ/kg 56
52
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 18
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
140
Resilience: Unit (Modulus of Resilience), kJ/m3 140
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 4.1
3.9
Thermal Shock Resistance, points 13
11

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.070
Chromium (Cr), % 17 to 19
18 to 20
Cobalt (Co), % 0 to 0.2
0
Iron (Fe), % 63.8 to 73.6
62.4 to 71
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 9.0 to 13
9.0 to 12
Niobium (Nb), % 0.32 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.5
Sulfur (S), % 0 to 0.030
0 to 0.030
Tantalum (Ta), % 0 to 0.1
0