MakeItFrom.com
Menu (ESC)

AISI 409 Stainless Steel vs. Grade 9 Titanium

AISI 409 stainless steel belongs to the iron alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 409 stainless steel and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 24
11 to 17
Fatigue Strength, MPa 140
330 to 480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
40
Shear Strength, MPa 270
430 to 580
Tensile Strength: Ultimate (UTS), MPa 420
700 to 960
Tensile Strength: Yield (Proof), MPa 200
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 710
330
Melting Completion (Liquidus), °C 1450
1640
Melting Onset (Solidus), °C 1400
1590
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 25
8.1
Thermal Expansion, µm/m-K 11
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
37
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.0
36
Embodied Energy, MJ/kg 28
580
Embodied Water, L/kg 94
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 100
1380 to 3220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 15
43 to 60
Strength to Weight: Bending, points 16
39 to 48
Thermal Diffusivity, mm2/s 6.7
3.3
Thermal Shock Resistance, points 15
52 to 71

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 10.5 to 11.7
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 84.9 to 89.5
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.75
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4