MakeItFrom.com
Menu (ESC)

AISI 409Cb Stainless Steel vs. ASTM A182 Grade F3VCb

Both AISI 409Cb stainless steel and ASTM A182 grade F3VCb are iron alloys. Both are furnished in the annealed condition. They have a moderately high 91% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 409Cb stainless steel and the bottom bar is ASTM A182 grade F3VCb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24
21
Fatigue Strength, MPa 140
320
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
74
Shear Strength, MPa 270
420
Tensile Strength: Ultimate (UTS), MPa 420
670
Tensile Strength: Yield (Proof), MPa 200
460

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 710
470
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1410
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
40
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
4.5
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.2
2.4
Embodied Energy, MJ/kg 31
33
Embodied Water, L/kg 94
64

Common Calculations

PREN (Pitting Resistance) 11
6.3
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
120
Resilience: Unit (Modulus of Resilience), kJ/m3 100
570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 15
24
Strength to Weight: Bending, points 16
22
Thermal Diffusivity, mm2/s 6.7
11
Thermal Shock Resistance, points 15
19

Alloy Composition

Calcium (Ca), % 0
0.00050 to 0.015
Carbon (C), % 0 to 0.060
0.1 to 0.15
Chromium (Cr), % 10.5 to 11.7
2.7 to 3.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 84.9 to 89.5
93.8 to 95.8
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.5
0 to 0.25
Niobium (Nb), % 0 to 0.75
0.015 to 0.070
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.040
0 to 0.010
Titanium (Ti), % 0
0 to 0.015
Vanadium (V), % 0
0.2 to 0.3