MakeItFrom.com
Menu (ESC)

AISI 409Cb Stainless Steel vs. S44536 Stainless Steel

Both AISI 409Cb stainless steel and S44536 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 89% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 409Cb stainless steel and the bottom bar is S44536 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 24
22
Fatigue Strength, MPa 140
190
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 75
78
Shear Strength, MPa 270
290
Tensile Strength: Ultimate (UTS), MPa 420
460
Tensile Strength: Yield (Proof), MPa 200
280

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 440
560
Maximum Temperature: Mechanical, °C 710
990
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1410
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
21
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
13
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.2
2.8
Embodied Energy, MJ/kg 31
41
Embodied Water, L/kg 94
140

Common Calculations

PREN (Pitting Resistance) 11
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
89
Resilience: Unit (Modulus of Resilience), kJ/m3 100
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 15
17
Strength to Weight: Bending, points 16
17
Thermal Diffusivity, mm2/s 6.7
5.6
Thermal Shock Resistance, points 15
16

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.015
Chromium (Cr), % 10.5 to 11.7
20 to 23
Iron (Fe), % 84.9 to 89.5
72.8 to 80
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0 to 0.75
0.050 to 0.8
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.030
Titanium (Ti), % 0
0 to 0.8