MakeItFrom.com
Menu (ESC)

AISI 410Cb Stainless Steel vs. Grade 23 Titanium

AISI 410Cb stainless steel belongs to the iron alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 410Cb stainless steel and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 15
6.7 to 11
Fatigue Strength, MPa 180 to 460
470 to 500
Poisson's Ratio 0.28
0.32
Reduction in Area, % 50 to 51
30
Shear Modulus, GPa 76
40
Shear Strength, MPa 340 to 590
540 to 570
Tensile Strength: Ultimate (UTS), MPa 550 to 960
930 to 940
Tensile Strength: Yield (Proof), MPa 310 to 790
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 730
340
Melting Completion (Liquidus), °C 1450
1610
Melting Onset (Solidus), °C 1400
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 27
7.1
Thermal Expansion, µm/m-K 10
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
36
Density, g/cm3 7.7
4.4
Embodied Carbon, kg CO2/kg material 2.0
38
Embodied Energy, MJ/kg 29
610
Embodied Water, L/kg 97
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 130
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 1600
3430 to 3560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 20 to 35
58 to 59
Strength to Weight: Bending, points 19 to 28
48
Thermal Diffusivity, mm2/s 7.3
2.9
Thermal Shock Resistance, points 20 to 35
67 to 68

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0 to 0.18
0 to 0.080
Chromium (Cr), % 11 to 13
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 84.5 to 89
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Niobium (Nb), % 0.050 to 0.3
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4

Comparable Variants